Nonstationary and Chaotic Dynamics in Age-Structured Population Models
نویسندگان
چکیده
منابع مشابه
A Note on the Convergence of the Homotopy Analysis Method for Nonlinear Age-Structured Population Models
In this paper, a theorem is proved which presents the series solution obtained from the homotopy analysis method is convergent to the exact solution of nonlinear age-structured population models.
متن کاملExistence and stability of equilibria in age-structured population dynamics
The existence of positive equilibrium solutions of the McKendrick equations for the dynamics of an age-structured population is studied as a bifurcation phenomenon using the inherent net reproductive rate n as a bifurcation parameter. The local existence and uniqueness of a branch of positive equilibria which bifurcates from the trivial (identically zero) solution at the critical value n = 1 ar...
متن کاملFitness versus longevity in age-structured population dynamics.
We examine the dynamics of an age-structured population model in which the life expectancy of an offspring may be mutated with respect to that of the parent. While the total population of the system always reaches a steady state, the fitness and age characteristics exhibit counter-intuitive behavior as a function of the mutational bias. By analytical and numerical study of the underlying rate e...
متن کاملAnalytic algorithms for Some Models of Nonlinear Age–Structured Population Dynamics and Epidemiology
Three analytic algorithms based on Adomian decomposition, homotopy perturbation and homotopy analysis methods are proposed to solve some models of nonlinear age-structured population dynamics and epidemiology. Truncating the resulting convergent infinite series, we obtain numerical solutions of high accuracy for these models. Three numerical examples are given to illustrate the simplicity and a...
متن کاملPositive Equilibrium Solutions for Age- and Spatially-Structured Population Models
The existence of positive equilibrium solutions to age-dependent population equations with nonlinear diffusion is studied in an abstract setting. By introducing a bifurcation parameter measuring the intensity of the fertility it is shown that a branch of (positive) equilibria bifurcates from the trivial equilibrium. In some cases the direction of bifurcation is analyzed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2017
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2017/1964286